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Abstract

We have performed three-dimensional linear stability analyses of natural convection of air (Pr = 0.71) in horizontal annuli between
concentric cylinders by using a spectral element method. A linear stability theory is applied to a basic two-dimensional steady solution
which is called a crescent-shaped convection, and an eigenvalue problem of matrix form is constituted. We evaluate a critical Rayleigh
number where the basic flow loses its stability with respect to three-dimensional disturbances over a wide range of aspect ratio
(1 6 A 6 20). It is found that the instability mode which destabilizes the basic convection exchanges among three different modes,
and the new transition lines are proposed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection in an annulus between two horizon-
tal concentric cylinders has been extensively investigated
because of its wide variety of practical and technical appli-
cations such as heat exchangers, thermal storage systems
and electric transmission cables. The convective flow pat-
terns in the annulus, where the temperature of the inner
cylinder is kept higher than that of the outer cylinder,
greatly depend on a aspect ratio A, which is defined as
the ratio of the diameter of the inner cylinder to the gap
width, and show rich transient phenomenon. Therefore,
the natural convection in the annulus has also attracted
theoretical attention to stabilities in order to clarify the
mechanism of the transitions of the flow patterns.

Many experimental and numerical investigations have
been conducted to study the natural convection in horizon-
tal annuli [1–4]. Powe et al. [2] have performed flow visual-
izations of the natural convection of air (Pr = 0.71) and
presented a following comprehensive description of differ-
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ent flow regimes depending on a parameter space of
(Ra,A), where Ra is the Rayleigh number. Steady two-
dimensional convections with two global circulations
opposed symmetrically with the vertical center-plane were
observed at relatively small values of the Rayleigh number,
which is often called a crescent-shaped convection. As the
Rayleigh number increased above a critical value, different
flow patterns were found to occur depending on the aspect
ratio. In the range of the aspect ratio A < 2.8, the steady
crescent-shaped convection underwent a transition to an
unsteady two-dimensional convection due to instability,
which was characterized by periodic oscillations passing
through the vertical center-plane at the top region of the
annulus. For 2.8 < A < 8.5, an oscillatory convection
occurred above a critical Rayleigh number, which was
characterized by a three-dimensional spiral motion in
the upper portion of the annulus. For A > 8.5, a two-
dimensional multicellular convection appeared.

However, another two-dimensional solution different
from the crescent-shaped one has been found by Yoo [5]
numerically, which had a flow pattern with two additional
smaller vortices in the top region of the annulus as well as
two large circulations similar to the crescent-shaped
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Nomenclature

A aspect ratio of the inner cylinder diameter to gap
width, A ¼ 2r�i =L�

g* gravitational acceleration
hm Lagrange interpolants through Gauss–Legen-

dre–Lobatto points
L* gap width of the annulus, representative length,

L� ¼ r�o � r�i
l wave length in the z-direction, l = 2p/a
N truncation parameter of expansions
p pressure
Pr Prandtl number, Pr = m*/j*

r�i radius of the inner cylinder
r�o radius of the outer cylinder
(r,h,z) components of the location in the cylindrical

co-ordinates
t time
T temperature
T �i temperature of the inner cylinder

T �o temperature of the outer cylinder
Ra Rayleigh number, Ra ¼ b�g�ðT �i � T �oÞL�3=ðm�j�Þ
(ur,uh,uz) components of the velocity of the cylindrical

co-ordinates

Greek symbols

a wave number in the z-direction
b* thermal expansion coefficient
� penalty number
j* thermal diffusivity
k* thermal conductivity
m* kinematic viscosity
q* density
x eigenvalue, x = xr + ixi

Subscripts

� dimensional value
c critical
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convection. Mizushima et al. [6] have calculated the bifur-
cation diagram of the two different solutions under the
assumption of the two-dimensionality and clarified the ori-
gins of the change of the flow patterns due to the saddle-
node bifurcation for small aspect ratios. Namely, they
found the convection which had a saddle-node point in
addition to the crescent-shaped convection. It should be
noted that, in general, the crescent-shaped convection can
be attained from natural initial conditions, while the con-
vection with the saddle-node point can only be realized
under the particular conditions and has less physical reality
than the crescent-shaped convection.

Choi and Kim [7] have studied the linear stability of the
crescent-shaped convection, which is physically more real-
izable, by solving the linear equations for three-dimen-
sional disturbances with time marching method. It was
shown that the principle of exchange of stabilities was valid
for A > 2.1. This implied that the resultant three-dimen-
sional spiral convection was a steady-state flow, which
was in contrast to the previous findings of Powe et al. [2].
On the other hand, for A < 2.1, they could not find any
critical Rayleigh number. Moreover, the three-dimensional
linear stability theory for classical parallel flows has been
applied by Dyko et al. [8]. They studied an end-wall effect
on the instability and evaluated the critical Rayleigh num-
bers even for A < 2.1. They, however, always assumed the
symmetry conditions at the vertical center-plane, which
might not lead to realistic solutions especially for the small
aspect ratio. In fact, Labonia and Guj [9] as well as Powe
et al. [2] have recently performed an experimental study
of the transition from steady to chaotic flow in a horizontal
annulus for a small aspect ratio and showed an oscillating
flow pattern passing through the vertical center-plane
above a critical value.
In this way, the critical condition is not clear in the
range of small aspect ratios. Therefore, we investigate the
linear stability of the natural convection in an annulus
focusing on the crescent-shaped convection and taking
account of asymmetry conditions as well as symmetry ones
at the vertical center-plane, and clarify the critical condi-
tions. The three-dimensional linear stability theory is
applied to the two-dimensional crescent-shaped convection
by using a spectral element method. The eigenvalue prob-
lem of matrix form is constituted based on the linear stabil-
ity theory. We evaluate the critical Rayleigh number where
the two-dimensional convection loses the stability to the
three-dimensional disturbances.

2. Mathematical formulation

2.1. Basic equations

Consider a fluid contained in a horizontal annulus
between two infinitely long concentric cylinders with inner
and outer radii r�i and r�o which are maintained at temper-
atures T �i and T �oð< T �i Þ, respectively. Fig. 1 shows the
geometry of the annulus and co-ordinates system, where
r* is taken along the radial direction, h is measured clock-
wise from the top of the vertical center-plane and z*-axis is
taken along the axis of the annulus with origin O.

We define non-dimensional quantities as follows:

r ¼ r�

L�
; z ¼ z�

L�
; ur ¼

u�r
ðj�=L�Þ ; uh ¼

u�h
ðj�=L�Þ ;

uz ¼
u�z

ðj�=L�Þ ; t ¼ t�

ðL�2=j�Þ
; p ¼ p�

ðq�j�=L�2Þ
;

T ¼ T � � T �o
T �i � T �o

;

ð1Þ



r

r

r
L

g

z

T

T

i

i

o

o

*
*

*
*

*

*

*

*

θ

Fig. 1. Geometry and co-ordinate of the problem.
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where L*, j* and q* are the gap width of the annulus, the
coefficient of thermal diffusivity and the density of the fluid,
respectively. We represent physical quantities with their
dimensions by attaching a superscript * to them.

We assume that the flow is incompressible and the Bous-
sinesq approximation is valid, where the approximation is
applicable for sufficiently small temperature difference
between the inner and outer cylinders. The velocity
(ur,uh,uz), pressure p and temperature T are governed by
the continuity, Navier–Stokes and energy equations as
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The flow field is characterized by three non-dimensional
parameters, i.e., the Rayleigh number, Prandtl number
and aspect ratio of the annulus, which are defined as

Ra ¼ b�g�L�3ðT �i � T �oÞ
j�m�

; Pr ¼ m�

j�
; A ¼ 2r�i

L�
; ð7Þ

where b*, m* are the coefficients of thermal expansion and
kinematic viscosity of the fluid, and g* gravitational accel-
eration, respectively. It should be noted that the value of
the Prandtl number is fixed as Pr = 0.71 (air) throughout
this paper.

We assume that the surfaces of inner and outer cylinders
are rigid and maintained at different uniform temperatures.
Then the boundary conditions are written as

ur ¼ uh ¼ uz ¼ 0; T ¼ 1 at r ¼ A
2
; ð8Þ

ur ¼ uh ¼ uz ¼ 0; T ¼ 0 at r ¼ A
2
þ 1: ð9Þ
2.2. Non-linear steady-state and linear disturbance equations

We calculate a non-linear steady-state solution to study
its linear stability. In order to simplify the mathematical
formulation, we introduce a penalty-function method,
where the divergence-free condition of Eq. (2) is reduced
to express a limiting state in which the divergence of the
velocity is not zero but extremely small [10,11]. Then, the
pressure p is replaced as

p ¼ � 1

�
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� �
; ð10Þ

where � is a penalty number of order O(10�8).
Now we focus on the two-dimensional crescent-shaped

convection persistent in the axial z-direction of the annu-
lus. Therefore, the non-linear steady-state solution is
expressed as (Ur(r,h), Uh(r,h),T(r,h)). Substituting the
expressions into Eqs. (2)–(6) and dropping the terms
including the operator o/ot, we obtain the following two-
dimensional steady-state equations as
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The boundary conditions for (Ur,Uh,T) are the same as
Eqs. (8) and (9). In addition, we assume that the steady-
state flow does not pass through the vertical center-plane
and is symmetric with it. Then, the symmetry condition is
written as
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oU r

oh
¼ U h ¼

oT
oh
¼ 0 at h ¼ 0; p: ð14Þ

All the steady-state crescent-shaped solutions obtained
from Eqs. (11)–(13) are not stable but become unstable
due to instability, and undergo transitions to other flow
patterns. We investigate the linear stability of the steady-
state solutions by adding small disturbances to them and
by observing the time dependence of the disturbances.
Then, the velocity and temperature are expressed as the
sum of the steady solution (Ur,Uh,T) and the disturbances
ð bur ; buh ; buz ; bT Þ as
l
α2πg*

=

Fig. 2. Schematic figures of disturbance modes. (a) Three-dimensional
oscillation of disturbances with wave number a. (b), (c) Disturbance
flow and temperature fields of the cross section of the annulus, where
the streamlines are on the right side and the isotherms on the left side.
(b) s-mode, (c) a-mode.
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where a is a wave number and x is a complex frequency.
The real part xr and the imaginary part xi denote the angu-
lar frequency and the linear growth rate of the disturbance,
respectively.

The steady solution is unstable if xi > 0 and the distur-
bance grows with time. There are two types of instability.
One is that the steady solution is unstable in regard to a
stationary disturbance and it bifurcates to another steady
solution if xr = 0 when xi vanishes. The other is that the
steady solution is unstable in regard to an oscillatory dis-
turbance and it bifurcates to a periodic solution with an
angular frequency of xr if xr 6¼ 0 when xi = 0. In addition,
the disturbance with a = 0 forms the two-dimensional
disturbance flow field, while that with a 6¼ 0 forms the
three-dimensional one. Schematic figure of oscillating dis-
turbance with the wave number a and the corresponding
wave length l = 2p/a is depicted in Fig. 2(a).

Substituting Eq. (15) into Eqs. (2)–(6), then subtracting
the steady-state equations from the resultant equations,
using the penalty-function method for the pressure also
here and dropping the non-linear terms of the disturbance,
we obtain the following linearized equations for the distur-
bance as:
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The boundary conditions for ðbur; buh; buzÞ are the same as

Eqs. (8) and (9), while the condition for bT is written as
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bT ¼ 0 at r ¼ A
2
;

A
2
þ 1: ð20Þ

In addition, since the non-linear steady-state solutions have
the symmetry conditions of Eq. (14), the linear stability of
such solutions can be analyzed by considering the follow-
ing symmetric (s-mode) and asymmetric (a-mode) modes
of the disturbances separately. Then, the symmetry and
asymmetry conditions for these two modes are written as
s-mode:

o bur

oh
¼ buh ¼

o buz

oh
¼ obT

oh
¼ 0 at h ¼ 0; p: ð21Þ

a-mode

bur ¼
o buh

oh
¼ buz ¼ bT ¼ 0 at h ¼ 0; p: ð22Þ

We can derive the above conditions considering the parities
of the velocity and temperature in Eqs. (16)–(19). For in-
stance, ðbur; buz; bT Þ are odd functions of h and buh is an even
function in Eq. (22). Introducing the parities of the distur-
bance of a-mode in Eqs. (16)–(19) and considering the par-
ities of steady solution such that (Ur,T) are even functions
and Uh is an odd function of h, we can see the equation sys-
tem consistent. It should be noted that the flow of distur-
bances does not pass through the vertical center-plane for
the s-mode, while it does pass through the plane for the
a-mode, where the schematic flow and temperature fields
of the cross section of the annulus are depicted in
Fig. 2(b) and (c).
3. Numerical method

Numerical calculations are carried out by utilizing a
spectral element method [12,13]. The spectral element
method has both the generality of the finite element
method and the accuracy of the classical spectral method.

In the spectral element method, the actual calculation
domain of A/2 6 r 6 A/2 + 1 and 0 6 h 6 p is broken up
into K elements, where the computational domain for h is
reduced by half because of the symmetry and asymmetry
conditions as Eqs. (14), (21) and (22). Here we break the
domain into three elements in order to be more dense in
the top of the annulus such as (1) 0 6 h 6 p/6, (2) p/6 6
h 6 p/3 and (3) p/3 6 h 6 p, where the range of r is fixed
as A/2 6 r 6 A/2 + 1. Each element is mapped from the
physical (r,h) space to the local ðr; hÞ co-ordinate system
whose ranges are [�1,1]. For example, the co-ordinate
transformations from (r,h), defined on the interval
½rk

a; r
k
b�; ½h

k
a; h

k
b� in the kth element, to ðr; hÞ are carried out

by the following equations as:

r ¼ 2

rk
b � rk

a

ðr � rk
aÞ � 1; h ¼ 2

hk
b � hk

a

ðh� hk
aÞ � 1: ð23Þ

The velocity and temperature are expanded by high-
order Lagrangian interpolants as
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where hm is the Nth order Lagrange interpolants through
(N + 1) Gauss–Legendre–Lobatto points in the k-th
element.

Substituting the expansions of Eq. (24) into the weak
forms of both the steady-state and disturbance equations
and also using the Galerkin method, we obtain a set of
algebraic equations for the coefficients of the expansions.
We use a mapping array method [13] to construct the sys-
tem matrix from the element matrices. The set of algebraic
equations for the steady solution are solved numerically by
the Newton–Raphson method. On the other hand, the set
of algebraic equations for the stability of the steady solu-
tion constitutes a generalized eigenvalue problem in a
matrix form as

Aa ¼ ixBa; ð25Þ

where a is a vector of expansion coefficients, and A and B

are the real general matrices arising from the right-hand
side and left-hand side of Eqs. (16)–(19), respectively.
The eigenvalue x, with maximum imaginary part which
is called a most unstable mode, determines the stability
characteristics of the steady solution and the corresponding
eigenvector represents the flow and temperature fields of
the disturbance. This kind of stability analysis based on
the spectral element method and the eigenvalue problem
have been carried out by Adachi and Uehara [15] for flow
in a complex geometry. A computation of all the eigen-
values would be prohibitive. It seems plausible that the
most unstable mode must be located by looking only at
the some eigenvalues with smallest absolute values. This
can be easily done by using a simultaneous inverse iteration
method [14]. Therefore, the eigenvalue problem is solved
numerically by the simultaneous inverse iteration method.
When the angular frequency xr is not zero and has a large
value, however, the most unstable mode may not be in-
cluded in these eigen values with smallest absolute ones,
so we crosscheck in places by calculating all eigen values
by the QR method.
4. Results

We investigate the three-dimensional linear stability of
the two-dimensional steady solutions of the crescent-
shaped ones over a wide range of aspect ratio 1 6 A 6 20
and Pr = 0.71.
4.1. Numerical check

First, we check the numerical convergence of our calcu-
lations. All the numerical calculations are done with dou-
ble precisions. According to the previous studies [2,7],



Table 1
Convergence of the eigenvalues, x = xr + ixi, for the truncation parameters N

N s-mode a-mode

xr xi xr xi

A = 5, a = 3.05, Ra = 1900 8 0.0 0.521230 0.0 �0.827790
10 0.0 0.520719 0.0 �0.828506
12 0.0 0.520713 0.0 �0.828498
Choi and Kim [7] 0.0 0.573

A = 2, a = 3.45, Ra = 100,000 18 108.690 1.68087 119.224 2.57896
20 108.736 1.47898 119.352 2.30632
22 108.742 1.43442 119.423 2.27941
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Fig. 3. Neutral stability curve for A = 2.
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Fig. 4. Neutral stability curve for A = 3.
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the critical Rayleigh number might be O(105) for a rela-
tively small aspect ratio less than A � 2, while O(103) for
moderate and large values of aspect ratio greater than
A � 2. So, we calculate the eigenvalues for A = 2,
Ra = 100,000, a = 3.45 and A = 5, Ra = 1900, a = 3.05 to
check the convergence of the eigenvalues for some trunca-
tion parameters N. In calculations using the simultaneous
inverse iteration method, the 100 smallest eigenvalues of
the matrix are calculated iteratively for A = 2, Ra =
100,000, while the 30 smallest eigenvalues are calculated
for A = 5, Ra = 1900.

The eigenvalues are given in Table 1 for the truncation
parameters N. It is found that N = 10 is enough to obtain
four significant digits for A = 5 and Ra = 1900. The eigen-
value is compared with the result of Choi and Kim [7].
They obtained the linear growth rate from the numerical
simulation on the initial-value problem of the linearized
disturbance equations to the Navier–Stokes equations.
Our result is in reasonable agreement with that of Choi
and Kim. On the other hand, in the case of a larger value
of the Rayleigh number, N = 20 is needed to obtain three
to four significant digits for A = 2 and Ra = 100,000.
Therefore, the truncation parameter are hereafter taken
as N = 20 for Ra > O(104) and M = 10 for Ra < O(103)
to keep three to four significant digits.

4.2. Linear stability

We show the linear neutral stability curves as a function
of the wave number a, where the maximum linear growth
rate xi changes from a negative value to a positive one.
When the neutral curve has a local minimum, we define
the point as the critical Rayleigh number Rac and the crit-
ical wave number ac.

We show the neutral stability curve for A = 2 and 3 as
typical examples. Fig. 3 indicates the neutral curves
obtained for A = 2. We can see that the neutral curve of
the a-mode is smaller than one of the s-mode, and has a
local minimum. So, the a-mode gives the critical Rayleigh
number as Rac = 25,260 at ac = 3.45. Then, the angular
frequency is xr = 62.76. Therefore, the crescent-shaped
convection becomes unstable for the oscillatory distur-
bance of the a-mode, and the resultant convection due to
the instability is a three-dimensional oscillatory flow pass-
ing through the vertical center-plane. On the other hand,
the neutral curve for A = 3 is depicted in Fig. 4. It is
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emphasized that there is a closed region of the curve for the
s-mode in the range of 2.0 6 a 6 5.24 and the curve is
lower than that of the a-mode. So, the s-mode gives the
critical Rayleigh number as Rac = 2009 at ac = 3.08. Then,
the angular frequency is xr = 0. Therefore, the crescent-
shaped convection becomes unstable for the stationary dis-
turbance of the s-mode and the resultant convection is a
three-dimensional steady flow.

Furthermore, we calculate the critical Rayleigh numbers
for other values of the aspect ratio A and show them as tran-
sition lines in Fig. 5. The solid lines with plots of circles and
triangles show our results, while the dot-dashed lines AB,
CD and EF are the transition lines suggested by Powe
et al. [2], where a two-dimensional oscillatory flow occurs
above AB, a three-dimensional oscillatory one above CD
and a two-dimensional multicellular one above EF. And
the results of Choi and Kim [7] are indicated by squares.
The critical Rayleigh number obtained in the present study
shows good agreement with the results of Choi and Kim on
the transition line for the aspect ratio greater than A � 2. It
is clear that the exchange of stabilities [16] are valid on
the line and a three-dimensional steady flow occurs after
the transition, which is different from the transition line
EF of Powe et al. [2]. Since the critical Rayleigh number
is Rac = 1723 at a = 3.02 for A = 20 in this study, the
present line tends to an asymptotic value of the critical
Rayleigh number for the Rayleigh–Bénard convection,
Rac = 1707.8 and ac = 3.12, as A ?1. This means that the
roll type convection whose axes are perpendicular to the
axis of the annulus occurs for A ?1 because of ac 6¼ 0.

On the other hand, when the Rayleigh number increases
abruptly at A � 2, Choi and Kim reported that they could
not obtain the critical Rayleigh number for A < 2.1. We
can understand the reason from the neutral curve around
A � 2. It is expected that the closed neutral curve in the
wave number-Rayleigh number plane as seen in Fig. 4
Fig. 5. Critical Rayleigh number Rac as a function of the aspect ratio A.
might shrink to a point and subsequently disappear as
the aspect ratio decreases to the value of A � 2. This leads
to the discontinuous increase of the critical Rayleigh num-
ber near A � 2. Actually, it is confirmed that the closed
region shrinks as the aspect ratio decreases as seen in
Fig. 6 and the critical aspect ratio where the closed region
disappears is obtained as A = 2.2 in this study. Moreover,
there are two different curves of the critical Rayleigh num-
ber for 1 6 A 6 2.2 depending on the angular frequency xr

of the disturbance. Namely, one is a curve above which the
crescent-shaped convection bifurcates to a three-dimen-
sional steady flow indicated by open triangles, and the
other is one above which the crescent-shaped convection
bifurcates to a three-dimensional oscillatory flow indicated
by filled triangles in Fig. 5. These lines are different from
the transition line AB suggested by Powe et al. [2].

In order to conclude these complicated bifurcation phe-
nomenon, we propose the new transition lines, i.e., (i) for
1 6 A 6 1.6, the two-dimensional crescent-shaped convec-
tion becomes unstable for the steady three-dimensional
disturbances and the resultant convection is a three-dimen-
sional steady one, (ii) for 1.7 6 A 6 2.2, the two-dimen-
sional convection becomes unstable for the oscillatory
three-dimensional disturbances and the resultant flow is a
three-dimensional oscillatory one, and (iii) for A P 2.3,
the crescent-shaped convection becomes unstable for the
steady three-dimensional disturbances and the resultant
convection is a three-dimensional steady one. In addition,
the resultant convection for 1 6 A 6 2.2 passes through
the vertical symmetry plane because the instability mode
is the disturbances of the a-mode, while the resultant flow
is symmetric with the vertical plane for A P 2.3.
4.3. Flow field of disturbances

As we have seen, the transition lines change depending
on a mode of the most unstable disturbance. In this paper,
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however, not carried out the full three-dimensional numer-
ical simulation, we cannot visualize the exact subsequent
flow patterns after the transition. So, we show the distur-
bance flow fields on the transition lines to investigate the
nature of the hydrodynamic instability. Flow fields of
the most unstable disturbance mode are obtained from
the eigenvector of the eigenvalue problem. We display the
flow fields of the disturbance by an vector field of the eigen-
vector at the criticality. The range of the z-direction in the
figure is 0 6 z 6 3l, where l = 2p/a is a wave length in the
z-direction of the disturbance.

We show the spatial structure of the disturbance flow
field for A = 2 at the critical state as Rac = 25,260 and
ac = 3.45 in Fig. 7 together with the corresponding
steady-state solutions of the crescent-shaped convection.
In Fig. 7(a), the streamlines of the steady-state solutions
at the critical state are on the right side, while the isotherms
are on the left side. It is seen that there is the crescent-
shaped convection with the center on h � 60� from the
g*

Fig. 7. Flow fields at the critical state for A = 2: (a) stream-lines of the
crescent-shaped convection of the right side and isotherm on the left side
and (b) vector field of the disturbance velocity.
top and it affects the isotherms being thinner at the bottom
of the inner cylinder and at the top of the outer cylinder,
respectively. This means that the heat transfer is enhanced
at these locations, because the thermal boundary layer is
also thin there. The vector field of the disturbance velocity
at the cross section of r = A + 0.5 is shown in Fig. 7(b).
The disturbance flow reaches near the bottom region of
the annulus with a certain magnitude. This means that
the disturbance flow field destabilizes the crescent-shaped
convection overall the annulus. In addition, the distribu-
tion of the disturbance velocity is similar to the case of
A = 1.

On the other hand, the steady-state solutions and the
spatial structure of the disturbance for A = 3 at the critical
state as Rac = 2009 and ac = 3.08 are shown in Fig. 8. It is
evident that there is the crescent-shaped convection with the
center on h � 90� and it does not affect the isotherms,
because the Rayleigh number is relatively small compared
g*

ig. 8. Flow fields at the critical state for A = 3: (a) stream-lines of the
rescent-shaped convection of the right side and isotherm on the left side
nd (b) vector field of the disturbance velocity.
F
c
a
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with the case of A = 2. Therefore, the isotherms are almost
concentric circles, so the heat transfer is by thermal conduc-
tion. Moreover, the vector field of the disturbance velocity
as seen in Fig. 8(b) concentrates at the top region of the
annulus and the disturbance flow does not reach the bottom
region of the annulus, which is in contrast to the case of
A = 2. This is mainly due to the difference of the distur-
bance mode. As mentioned previously, the disturbance
mode which destabilizes the crescent-shaped convection is
the a-mode for A 6 2.2, and the s-mode for A P 2.3.

5. Concluding remarks

Linear stability of two-dimensional natural convections
between two concentric horizontal cylinders with regard to
infinitesimal three-dimensional disturbances has been
investigated for a fluid of Pr = 0.71. The eigenvalue prob-
lem has been constituted by successfully applying the linear
stability theory. We summarize the main conclusions as
follows.

1. The critical Rayleigh numbers where the basic two-
dimensional flow, called a crescent-shaped convection,
loses its stability with respect to three-dimensional dis-
turbances have been obtained over a wide range of
aspect ratio 1 6 A 6 20. It is found that the crescent-
shaped convection always becomes unstable for the
three-dimensional disturbances with a 6¼ 0, and the
resultant flow due to the instability is a three-dimen-
sional convection.

2. We have proposed new transition lines of Rac which
consist of three lines as a function of aspect ratio A.
(i) for 1 6 A 6 1.6, the crescent-shaped convection
bifurcates to a three-dimensional steady one without
the symmetry in the vertical center-plane, (ii) for
1.7 6 A 6 2.2, the crescent-shaped convection bifurcates
to a three-dimensional oscillatory one without the sym-
metry in the vertical plane, and (iii) for A P 2.3, the
crescent-shaped convection bifurcates to a three-dimen-
sional steady one with the symmetry in the vertical
plane.

3. It is found that the disturbance flow field which destabi-
lizes the crescent-shaped convection reaches near the
bottom of the annulus if the disturbance mode is the
a-mode for A 6 2.2, while is stagnant in the top region
of the annuls if the disturbance mode is the s-mode for
A P 2.3.
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